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SUMMARY

Fractional-step methods are commonly used for the time-accurate solution of incompressible Navier–
Stokes (NS) equations. In this paper, a popular fractional-step method that uses pressure corrections
in the projection step and its iterative variants are investigated using block-matrix analysis and an
improved algorithm with reduced computational cost is developed. Since the governing equations for
large eddy simulation (LES) using linear eddy-viscosity-based sub-grid models are similar in form to
the incompressible NS equations, the improved algorithm is implemented in a parallel LES solver. A
collocated grid layout is preferred for ease of extension to curvilinear grids. The analyzed fractional-step
methods are viewed as an iterative approximation to a temporally second-order discretization. At each
iteration, a linear system that has an easier block-LU decomposition compared with the original system
is inverted. In order to improve the numerical efficiency and parallel performance, modified ADI sub-
iterations are used in the velocity step of each iteration. Block-matrix analysis is first used to determine the
number of iterations required to reduce the iterative error to the discretization error of O

(
�t2

)
. Next, the

computational cost is reduced through the use of a reduced stencil for the pressure Poisson equation (PPE).
Energy-conserving, spatially fourth-order discretizations result in a 7-point stencil in each direction for the
PPE. A smaller 5-point stencil is achieved by using a second-order spatial discretization for the pressure
gradient operator correcting the volume fluxes. This is shown not to reduce the spatial accuracy of the
scheme, and a fourth-order continuity equation is still satisfied to machine precision. The above results
are verified in three flow problems including LES of a temporal mixing layer. Copyright q 2008 John
Wiley & Sons, Ltd.

Received 5 June 2007; Revised 1 November 2007; Accepted 6 November 2007

KEY WORDS: LES; fractional step; incompressible flow; parallel computing; pressure Poisson; block
matrix

∗Correspondence to: Giridhar Jothiprasad, General Electric Global Research, ES-500, 1 Research Circle, Niskayuna,
NY 12309, U.S.A.

†E-mail: jothipra@research.ge.com

Copyright q 2008 John Wiley & Sons, Ltd.



356 G. JOTHIPRASAD AND D. A. CAUGHEY

1. INTRODUCTION

Incompressible viscous flows arise in many scientific and engineering applications. The time-
accurate solution of incompressible Navier–Stokes (NS) equations is important both for the
simulation of high Reynolds number turbulent flow, often with turbulence modeling, as well as
for ‘moderate’ Reynolds number flows occurring in biological systems. Hence, many numerical
methods have been developed for this purpose. The mathematical difficulty in solving these equa-
tions is the elliptic behavior of the pressure waves, the speed of which is infinite. This gives rise
to a mixed system of elliptic–parabolic equations for the unknown velocity components Wi and
pressure p. Finite-difference and finite-volume approaches that solve directly for these unknowns
are called primitive-variable approaches and can be grouped into two broad categories: artificial
compressibility methods [1–4] and fractional-step methods [5–8].

Many authors have compared the relative efficiency and advantages of the different approaches,
and the general conclusion is that for time-accurate solutions the pressure projection approach
using the fractional-step method [7, 9, 10] is around 3 times faster than the artificial compressibility
approach [11]. The fractional-step method consists of a sequence of steps that solves for the
velocity and pressure at each time level. In the first step, the momentum equations are solved for a
provisional velocity field using the best available estimate for the pressure distribution. This step,
in general, will not yield a divergence-free velocity field unless the correct pressure distribution
is employed. Hence, in the second step, the pressure distribution is improved, usually by solving
a pressure Poisson equation (PPE), such that the computed pressure field will cause the velocity
field to become divergence free.

The fractional-step method commonly used in unsteady, incompressible flow simulations
becomes first-order accurate in time when boundaries are present. Attempts to achieve higher
order accuracy in time for fractional-step methods have involved either modifying the boundary
conditions (BCs) [10, 12], modifying the discretized equations being solved [13], or developing
higher-order splitting schemes [14, 15]. Runge–Kutta-based fractional-step methods [16] that
solve the PPE only at the last sub-step have also been developed. Most analyses of fractional-step
schemes have focused on studying the loss in time accuracy near boundaries. They are based on
a normal mode analysis of the unsteady Stokes equations [12, 17, 18] that are discretized only in
time. However, such analyses provide limited information on the effect of spatial discretizations
on the temporal and spatial accuracy.

In this paper, the block-matrix-based analysis procedure by Perot [13] is extended to
analyze the accuracy of the fractional-step method originally developed by Bell et al. [19]
and its iterative variants [20]. Many implementations [21] also treat the viscous terms implic-
itly using alternating direction implicit (ADI) sub-iterations when solving for the provisional
velocity in the first step of the fractional step. The temporal order of the error introduced by
such sub-iterations is discussed and efficient temporally second-order accurate algorithms are
identified.

Finally, the computational cost of the fractional-step method is reduced through the use of a
reduced stencil for the PPE that does not affect the spatial order of accuracy. Since the fractional-
step method is being developed to carry out large eddy simulation (LES) of incompressible flows,
the convective terms in the momentum equation and the divergence operator appearing in the
continuity equation are discretized to fourth-order spatial accuracy. The use of such high-order
schemes results in a very large stencil for the PPE. A method to reduce the stencil size while
satisfying the discretized continuity equation to machine precision is presented. Since a significant
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ITERATIVE FRACTIONAL-STEP METHOD FOR INCOMPRESSIBLE LES 357

fraction of the computational time in a fractional-step method is spent in solving the PPE, the
reduced stencil size is important in reducing the computational cost.

As mentioned earlier, the intent is to develop a solver for the LES of incompressible flows. The
governing equations for LES using linear eddy-viscosity-based sub-grid models are similar in form
to the incompressible NS equations and, since the focus here is on the basic numerical algorithm
rather than sub-grid models, the method is also applicable to the NS equations, themselves. The
remainder of the paper is organized as follows. In Section 2, the governing equations and the
numerical algorithm used are described. In Section 3, the block-matrix-based analysis procedure
for the iterative fractional-step method is introduced. In Section 4, the block-matrix-based analysis
procedure is used to study the order of accuracy of the fractional-step method. In Section 5,
the novel scheme to reduce the stencil size of the PPE is developed. In Section 6, results are
provided to substantiate the analysis. Finally, in Section 7, the contributions of the present work
are summarized.

2. NUMERICAL ALGORITHM

The governing equations for LES of incompressible flows using linear eddy-viscosity-based sub-
grid models are

�Wi

�t
+ �(WiWj )

�x j︸ ︷︷ ︸
Convective

=− �p
�xi︸︷︷︸

Pressure

+ �
�x j

(2�SWi j )

︸ ︷︷ ︸
Viscous

− �
�x j

(2�r S
W
i j )

︸ ︷︷ ︸
Sub-grid

(1)

�Wi

�xi︸︷︷︸
Continuity

=0 (2)

where Wi is the resolved, or computed, LES field; p is the pressure field; 2�r SWi j is the sub-grid
scale stress tensor representing the dynamic effect of the unresolved small eddies on the evolution
of the large resolved eddies and has been modeled using a linear eddy-viscosity based sub-grid
model; and SWi j = 1

2 (�Wi/�x j +�Wj/�xi ) is the strain rate of the computed LES field.
A collocated grid scheme, in which one solves for both the Cartesian velocities Wi and the

volume fluxes Fi , is employed here. In the collocated grid layout, the Cartesian velocity components
Wi are defined at the centers, while the volume fluxes Fi are defined at the mid-points of the
corresponding faces of the control volumes (cells) in computational space, see Figure 1. All scalars,
such as the pressure p, viscosity �, and eddy-viscosity �r , are also stored at the cell centers. This
layout is advantageous as it avoids spurious oscillations in the pressure field due to pressure–
velocity decoupling [22] and allows the governing equations to be relatively easily cast in strong
conservation form on curvilinear grids [23].

The numerical algorithm is implemented here only for a special case of curvilinear grids, namely
stretched Cartesian grids, since the primary motivation is to solve representative problems such
as the temporal mixing layer. For such grids, a staggered grid layout also works well [24], but
the collocated grid layout was chosen to make the code easily extensible to other complicated
curvilinear grids.
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Figure 1. Dependent variables and their locations in a collocated grid layout.

COMPUTATIONALPHYSICAL

Figure 2. Mapping of stretched physical grid to uniform computational grid.

The capability of solving on stretched Cartesian grids is achieved by mapping the stretched
physical grid onto a uniform computational grid (see Figure 2). Such a method is preferred
because it is relatively easy to transform the governing equations to a new coordinate system.
In stretched Cartesian grids, the physical grid can be constructed as a product of uni-directional
mappings

�i =�i (xi ) (3)

where �i are the coordinates in computational space, and xi are the coordinates in physical space.
Hence, the transformation tensor ��i/�x j that defines the properties of the transformation at any
point becomes a diagonal matrix

��i
�x j

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1
�x1

0 0

0
��2
�x2

0

0 0
��3
�x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)
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The determinant of the transformation tensor

J ≡det

(
��i
�x j

)
(5)

is proportional to the ratio of the volumes in the computational and physical space.
Vinokur [25] and Viviand [26] have shown that the governing equations in the transformed

space can be cast in strong conservation form. This form is particularly well suited for developing
numerical discretizations that are momentum and mass conserving, because all the terms in this
form appear as divergences of some flux. The conservation equations to be solved in the transformed
computational space are given in the strong conservation form

�(J−1Wi )

�t
+ �(FmWi )

��m
= − �

��m

(
J−1 ��m

�xi
p

)

+ �
��m

[
J−1 ��m

�xi
(�+�r )

{
�Wi

��l

��l
�x j

+ �Wj

��n

��n
�xi

}]
(6)

�Fm
��m

=0 (7)

where Fm = J−1(��m/�x j )Wj is the volume flux per unit area crossing the surface of constant
�m in the transformed space. Detailed derivation of the transformed governing equations can be
found in computational fluid dynamics textbooks [27, 28].

A temporally second-order accurate discretization of the governing LES equations,
Equations (1)–(2), on a collocated grid layout, is given by

Wn+1
i −Wn

i

�t
= −

[
3

2
Hi

{
Wn,Fn}− 1

2
Hi {Wn−1,Fn−1}

]
︸ ︷︷ ︸

Convective, Adams–Bashforth

− GW
i {pn+1}︸ ︷︷ ︸

Pressure gradient

+ 1

2
[D2{Wn+1

i ;�,�n+1
r }+D2{Wn

i ;�,�nr }]︸ ︷︷ ︸
Sub-grid+Viscous dissipation, Crank–Nicolson

(8)

Bi {Wn+1}=Fn+1
i (9)

CF{Fn+1}=0︸ ︷︷ ︸
Continuity

(10)

The difference from a staggered grid implementation is that the discretization includes an inter-
polation equation for the volume fluxes, Equation (9), and the continuity equation is discretized
based on these volume fluxes defined at the cell faces instead of on the velocities defined at the
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cell centers. Also, in these equations:

• superscripts ()n denote the time level;
• Hi {W,F} is the spatial discretization of the convective term �(WiWj )/�xi computed using
the given velocity field W and volume flux F;

• D2{Wi ;�,�r } is the spatial discretization of the viscous and the linear eddy-viscosity sub-grid
model terms �/�x j [2(�+�r )SWi j ];

• GW
i {p} is the spatial discretization of the pressure gradient, �p/�xi , computed at the cell

centers, and the superscript W denotes that this discretization is used to advance the velocities
Wi and not the volume fluxes Fi ;

• Bi {W} is the operator used to compute the volume fluxes Fi by interpolating velocity W to
the cell faces and multiplying by the area of the appropriate cell face.

• CF{F} is the spatially fourth-order accurate discrete continuity operator based on the volume
fluxes Fi instead of on velocity Wi .

The convective terms are discretized explicitly in time using the Adams–Bashforth scheme. The
explicit discretization of the convective terms imposes a Courant–Friedrichs–Lewy (CFL) stability
condition ((Wi�t/�x) ∼ O(1)) requiring the time step �t to be proportional to the grid spacing
�x . However, such a stability condition is not overly restrictive because accuracy considerations
for LES also require the CFL number to be of order one. On the other hand, the viscous terms and
sub-grid stresses are treated implicitly using the Crank–Nicolson scheme. This removes the more
restrictive Fourier stability condition ((��t/�x2) ∼ O(1)), which requires �t to be proportional to
�x2. Particularly in regions of grid refinement, the elimination of the Fourier stability constraint
is advantageous, making the above choices for the time discretization quite popular [10, 23].

In the differential (not discretized) equations, the convective and pressure terms simply rearrange
kinetic energy within the domain but do not dissipate energy. It has been observed that the
stability and accuracy of numerical schemes improves [24, 29] if the discrete version satisfies
these energy-conservation properties as well. Hence, the convective term is approximated by the
energy-conserving, spatially fourth-order accurate approximation

�(FmWi )

��m

C=Hi {Wn,Fn}= 9

8

�1[FmWi
1�i ]

�1�m
− 1

8

�3[FmWi
3�i ]

�3�m
(11)

where

�n�

�n�1

∣∣∣∣∣
�1,�2,�3

≡ �(�1+(n/2)��1,�2,�3)−�(�1−(n/2)��1,�2,�3)

n��1
(12)

�
n�1 |�1,�2,�3 ≡ �(�1+(n/2)��1,�2,�3)+�(�1−(n/2)��1,�2,�3)

2
(13)

It can be proved [29] that the above approximation for the convective term conserves energy if
the discrete continuity operator is chosen to be

�(Fm)

��m

C=CF{F}= 9

8

�1Fm
�1�m

− 1

8

�3Fm
�3�m

(14)

The above is clearly a fourth-order accurate approximation to the continuity equation.
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Lastly, the volume fluxes at the cell faces are determined from the velocities at the cell centers
using the fourth-order interpolation

Fi ≡[ 98 Wi
1�i − 1

8 Wi
3�i ]∗Ai (15)

where Ai is the surface area of the cell face perpendicular to �i .

3. BLOCK-MATRIX ANALYSIS OF ITERATIVE FRACTIONAL-STEP METHOD

Block-matrix analysis of the fractional-step method was first introduced by Perot [13]. Perot used
this analysis to describe the analogy between a temporally first-order accurate fractional-step
method and the block-LU factorization of the discretized equations on staggered grids. He further
extended the analysis to develop a temporally second-order accurate fractional-step method. Here,
the block-matrix analysis is used to study the temporally second-order accurate fractional-step
methods introduced by Bell et al. [19] and its iterative variants [20] on a collocated grid layout.
The analysis presented in this section is extended in later sections to study the order of accuracy
and reduce the stencil of the PPE.

The discretized equations, Equations (8)–(10), are rearranged so that all the unknowns, Wn+1,
Fn+1, and pn+1, appear on the left-hand side:

{
I

�t
− 1

2
D2{;�n+1,�n+1

r }
}
Wn+1

i +GW
i {pn+1}

=−
[
3

2
Hi {Wn,Fn}− 1

2
Hi {Wn−1,Fn−1}

]

+
{

I

�t
+ 1

2
D2{;�n,�nr }

}
Wn

i +BCs (16)

Bi {Wn+1}−Fn+1
i =0 (17)

CF{Fn+1}=0 (18)

Note that at each time step, a (nearly) linear system of equations subject to linear constraints
needs to be inverted (the dependence of the eddy viscosity on the velocity field introduces a
weak non-linearity). However, the constraints imposed by the discrete continuity equation make it
difficult to solve this system of equations while maintaining second-order temporal accuracy. Also,
the BCs are applied on Wn+1 and not on the provisional velocities that appear in the middle of
the fractional step. Hence, the BCs are an implicit part of the spatial discretization operators and
appear partly as source terms on the right-hand side (RHS). As mentioned earlier, other researchers
have developed schemes that modify the velocity BCs so as to apply them on the provisional
velocities and achieve second-order temporal accuracy; but such schemes are not analyzed in this
paper.
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The block-matrix form of the discretized equations, Equations (8)–(10), are given by⎡
⎢⎢⎢⎣

A 0 GW

−B I 0

0 CF 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
Wn+1

Fn+1

pn+1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
s

0

0

⎤
⎥⎥⎦+BCs (19)

where

W≡
⎡
⎢⎣
W1

W2

W3

⎤
⎥⎦ , F≡

⎡
⎢⎣
F1

F2

F3

⎤
⎥⎦ , GW ≡

⎡
⎢⎢⎣
GW

1

GW
2

GW
3

⎤
⎥⎥⎦

A≡
(

I

�t
− 1

2
L{;�n+1,�n+1

r }
)

L{;�,�r }≡
⎡
⎢⎣
D2{;�,�r } 0 0

0 D2{;�,�r } 0

0 0 D2{;�,�r }

⎤
⎥⎦

s≡Source terms

B≡ Interpolation operator to obtain F from W

Equation (19) is easily seen to be of the form, Px=b. Since P is hard to invert directly, an
iterative procedure is used in which P is replaced by a matrix M which is easier to invert. At the
mth iteration

M�x [m] =b−Px [m−1] (20)

is solved to obtain a better estimate for the solution x [m] = x [m−1]+�x [m], by using the residual of
the earlier estimate, b−Px [m−1]. More details on the convergence and stability of such iterative
schemes can found in [30].

An efficient iterative scheme requires that M be easy to invert and be close to P so that the
iterative procedure converges in a few (2 or 3) iterations. In the iterative fractional-step method,
M is obtained by approximating P with

P=

⎡
⎢⎢⎢⎣

A 0 GW

−B I 0

0 CF 0

⎤
⎥⎥⎥⎦ −−−−→

approx.
M≡

⎡
⎢⎢⎣

Â 0 �t ÂGW

−B I −�t BGW +�tGF

0 CF 0

⎤
⎥⎥⎦ (21)

where

GF≡

⎡
⎢⎢⎣
GF

1

GF
2

GF
3

⎤
⎥⎥⎦
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represents the spatial discretization of the pressure gradient multiplied by the surface area of cell
face normal to xi , �p/�xi ∗Ai , that is used to correct the volume fluxes Fi . Here, the superscript F
denotes the fact that this discretization is used to correct the volume fluxes Fi and not the velocities
Wi . The following approximations are made:

• A is replaced by Â: The inversion of M requires the inversion of A as will be seen later.
Since it is hard to invert A directly, A is often inverted using ADI factorizations or iterative
schemes based on ADI factorizations. Hence, sub-iterations to invert A within each iteration
of the iterative fractional-step method are present. Since only a finite number of sub-iterations
is performed, this introduces an iterative error which can be interpreted as exactly inverting a
nearby matrix, Â. The exact form of Â depends on the sub-iterations used and the number of
sub-iterations. Details on the sub-iteration to invert A are given later. Note that A is dominated
by I/�t for small �t . Hence A is of order O(1/�t), and the sub-iteration is chosen such
that A− Â is either of order O(1) or O(�t).

• G is replaced by �t ÂGW and 0 is replaced by −�t BG+�tGF: This approximation makes
it easier to invert M compared with P , as there is a block-LU decomposition for M in closed
form

M≡

⎡
⎢⎢⎣

Â 0 �t ÂGW

−B I −�t BGW +�tGF

0 CF 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Â 0 0

−B I 0

0 CF −�tCFGF

⎤
⎥⎥⎦

⎡
⎢⎢⎣
I 0 �tGW

0 I �tGF

0 0 I

⎤
⎥⎥⎦ (22)

Again note that Â is dominated by I/�t for small �t ; hence, GW −�t ÂGW is of order
O(�t). The other approximation introduces an O(�t) error as well.

Next, that M is close to P is demonstrated by comparing order estimates of the various matrices.
Because P is dominated by the I/�t term for small �t , it is O(1/�t):

P=

⎡
⎢⎢⎢⎣

I

�t
+·· · · · · · · ·
· · · · · · 0

0 · · · 0

⎤
⎥⎥⎥⎦=O

(
1

�t

)
(23)

The changes introduced to approximate P with M introduce at most only an O(1) difference
between the two matrices:

M−P=

⎡
⎢⎢⎣
Â−A 0 (�t Â− I )GW

0 0 �t (BGW −GF)

0 0 0

⎤
⎥⎥⎦=

⎡
⎢⎣
O(1) or O(�t) 0 O(�t)

0 0 O(�t)

0 0 0

⎤
⎥⎦ (24)

Hence, M is not only close to P but also much easier to invert than P . In practice, only two or
three iterations are usually sufficient to adequately converge the process.

The similarity to the conventional description of the fractional-step method can be seen by
expanding the steps involved in the mth iteration of the iterative fractional-step procedure. The
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equations solved in the mth iteration are

⎡
⎢⎢⎣

Â 0 �t ÂGW

−B I −�t BGW +�tGF

0 CF 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�W[m]

�F[m]

�p[m]

⎤
⎥⎥⎦ = r [m−1] =

⎡
⎢⎣
s

0

0

⎤
⎥⎦

+BCs−

⎡
⎢⎢⎢⎣

A 0 GW

−B I 0

0 CF 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
W[m−1]

F[m−1]

p[m−1]

⎤
⎥⎥⎦ (25)

The steps involved in this block-LU decomposition are detailed below:

1. Solve for a provisional velocity Ŵ using the latest approximation to the pressure p[m−1]
according to

Â(�Ŵ)=s+BCs−AW [m−1]−GW p[m−1] (26)

where the provisional velocity, Ŵ=W[m−1]+�Ŵ.
2. Compute the provisional volume flux F̂ by interpolating the velocity Ŵ to the cell faces using

F̂= BŴ (27)

3. Solve the PPE

CFGF{�p[m]}= CF{F̂}
�t

(28)

for the pressure correction �p[m] that projects the provisional volume flux onto a divergence-
free space.

4. Correct the provisional volume flux using the pressure correction �p[m] according to

F[m] = F̂−(�t)GF{�p[m]} (29)

so that it becomes divergence free.
5. Correct the provisional velocity using the pressure correction �p[m] according to

W[m] =Ŵ−(�t)GW {�p[m]} (30)

6. Update the pressure according to

p[m] = p[m−1]+�p[m]

Hence, performing a single iteration is equivalent to the fractional-step method introduced by
Bell et al. [19], while performing more than one iteration is equivalent to its iterative variants [20].
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4. TEMPORAL ACCURACY OF THE ITERATION ERROR

Although the original discretized equations are second-order accurate in time, the iteration error
introduced by performing only a finite number of iterations can reduce the temporal order of
accuracy. In this section, the minimum number of iterations needed to reduce the temporal
accuracy of the iteration error to that of the numerical discretization error of O(�t2) is deter-
mined. Details on the choice of Â and its influence on the temporal order of accuracy are also
discussed.

The iteration error in the mth iteration is defined to be the residual

r [m] ≡b−Px [m] (31)

computed using the mth estimate for the solution x [m]. Equation (20) can be easily reduced to
show that

r [m] =(NM−1)r [m−1] (32)

where N ≡M−P . Applying the above equation recursively gives

r [m] =(NM−1)mr [0] (33)

Next, order estimates of N , M and r [0] are used to show that r [m] =O(�tm) or O(�t2m). It is
seen from Equation (23) that M is of order of O(1/�t). In order to make an estimate of r [0], it
is necessary to know x [0]. The present implementation takes x [0] to be given by the values at the
previous time level

x [0] =
⎡
⎢⎣
Wn

Fn

pn

⎤
⎥⎦ (34)

hence, r [0] is O(1). Equation (24) shows that there are two cases for the temporal order of N ,
which accordingly determines the order of the iteration error:

1. N is O(1): In this case, (NM−1) is of O(�t). Using these order estimates and Equation (32),
it can be seen that r [m] is O(�tm). Hence, if two iterations are performed the iteration error
becomes the same order as the numerical discretization error, which is O(�t2). If three
iterations are performed, the iterative error becomes O(�t3), but, because the discretization
error is still O(�t2), the overall scheme continues to be second-order accurate in time.

2. N is O(�t): In this case, (NM−1) is of O(�t2). Again, using these order estimates and
Equation (32), it can be seen that r [m] is O(�t2m). Hence, after a single iteration the iteration
error becomes the same order as the numerical discretization error which is O(�t2).

Hence, depending on the order of N , one or two iterations are sufficient to achieve the desired
second-order temporal accuracy. In Section 6, numerical results are shown to confirm this result,
and the computational efficiency in typical flow problems is used to comment on the relative merits
of the two cases.

Equation (24) also shows that the choice of Â largely determines the temporal order of N .
Hence, the choice of Â in the current parallel implementation is briefly discussed. As mentioned
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earlier, a finite number of sub-iterations of an iterative scheme is used to invert A. Starting with
the matrix A, successive approximations are introduced to obtain the matrix A′ that is inverted at
each sub-iteration of the iterative scheme. The definition of Â depends both on the matrix A′ and
the number of sub-iterations performed.

The matrix A, defined in Equation (19), arises from the spatial discretization of viscous and
residual stress terms and consists of discretizations of second-order normal derivatives such as
�/�x1(()�()/�x1) and cross derivatives such as �/�x1(()�()/�x2),

A ≡ I

�t
− 1

2
L{;�n+1,�n+1

r }

= I

�t
− 1

2
(Lx1{; }+Lx2{; }+Lx3{; }+Lcross{; }) (35)

where Lx1{; } is the spatially fourth-order accurate discretization of the corresponding normal

derivative term, �
�x1

(()�()/�x1); and Lcross{; } represents the spatially second-order accurate
discretization of all the cross-derivative terms. The cross-derivative terms are the only terms
discretized to second-order spatial accuracy; all other terms are discretized to fourth-order spatial
accuracy. In incompressible flow simulations with constant viscosity, there are no cross derivatives
and so the overall scheme is spatially fourth-order accurate.

The first approximation to A is based on the ADI factorization

A′′′ = 1

�t

(
I − �t

2
Lx1

)(
I − �t

2
Lx2

)(
I − �t

2
Lx3

)
(36)

In the above, at each sub-iteration, the cross-derivative terms are treated explicitly and the normal
derivative terms in the different directions have been factored out separately. Each factor requires
the inversion of linear systems for unknowns along lines in a single direction, say x1, thereby
reducing the bandwidth of the linear system being inverted. Expanding A′′′, it can be seen that the
leading order temporal error introduced by the above approximation is O(1)

A−A′′′ =
[
I

�t
− 1

2
(Lx1 +Lx2 +Lx3 +Lcross)

]

−
[
I

�t
− 1

2
(Lx1 +Lx2 +Lx3)+O(�t)

]

= O(1) (37)

The next approximation is motivated by the need to reduce the communication time between
processes in a parallel implementation. On a distributed memory parallel machine, data need to be
divided or domain decomposed among the various processes. In the current implementation, data
in the x1x2 planes are stored in each process but are divided along the x3 direction. Hence, the
inversion along lines in the x3 direction (due to the factor (I −(�t/2)Lx3)) requires swapping from
x1x2 planes in a process to x2x3 planes. Such swapping requires communication of O(N1N2N3)

variables making the computation and communication requirements to be of the same order. The
fact that the planes must be swapped in each sub-iteration further exacerbates the problem.
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Figure 3. Schematic representation of a tridiagonal matrix in which non-zero elements are denoted by
crosses and asterisks. Dashed box denotes the division of data among four processes. Elements denoted

by asterisks necessitate communication between process for solving the linear system.

In order to address this problem, the linear system arising in the x3 direction is modified so that
no communication is required between the processes. Typically, it is necessary to solve a banded
linear system along lines in the x3 direction. Figure 3 is a schematic representation of a tridiagonal
matrix in which the non-zero elements are denoted by either crosses or asterisks. The division of
data among, say, four processes is denoted by dashed boxes. If the elements denoted by asterisks
were zero, the system would correspond to four smaller linear systems which could be solved
without the exchange of data between the processes.

Thus, in order to reduce the communication requirements the original matrix system arising
along lines in the x3 direction is approximated by taking the elements denoted by asterisks to be
zero. This is here referred to as using broken lines in the x3 direction and denoted by the operator
(I −(�t/2)LB

x3). In the definition for the matrix A′′′, Equation (36), (I +(�t/2)Lx3) has been
approximated by broken lines in the x3 direction

A′′ = 1

�t

(
I − �t

2
Lx1

)(
I − �t

2
Lx2

)(
I − �t

2
LB
x3

)
(38)

The inversion of A′′ now requires no communication between the processes. An algorithm very
similar to the above can be found in [21].

Figure 4 compares the parallel speedup using broken lines in the x3 direction against the original
ADI factorization, Equation (36). The SPEC number is the number of times the given subroutine
can be executed in a unit of time (say, a day) on a given machine. Here, the SPEC number for the
subroutine that performs the matrix inversion of A′′ in each sub-iteration is plotted as a function of
the number of parallel processes. It is clear that the broken lines modification in the x3 direction
results in nearly linear speedup with additional processes.

In the broken lines approach, the number of off-diagonal elements neglected in the banded linear
system along lines in the x3 direction increases with the number of processes. Hence, the iteration
error after a finite number of sub-iterations is expected to increase with the number of processes.
However, irrespective of the number of processes, the temporal order of the error introduced by
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Figure 4. Comparison of the parallel performance of broken and complete lines in the x3 direction
for the ADI sub-iterations. Comparison is for the 2D periodic vortex problem on a 963 cell grid,

described in detail in Section 6.1.

the broken lines approximation is always O(1) because

A′′′−A′′ =
[
1

�t

(
I − �t

2
Lx1

)(
I − �t

2
Lx2

)(
I − �t

2
Lx3

)]

−
[
1

�t

(
I − �t

2
Lx1

)(
I − �t

2
Lx2

)(
I − �t

2
LB
x3

)]

=
[
1

�t

(
I − �t

2
Lx1

)(
I − �t

2
Lx2

)(
−�t

2
Lx3 +

�t

2
LB
x3

)]

= O(1) (39)

The final approximation to A′′ is related to the computation of eddy viscosity and viscosity at
each ADI sub-iteration. In LES or in simulations where either the eddy viscosity or the viscosity
changes between time levels, Equation (35) requires that the viscosity values at time level n+1
be used in evaluating the various operators. However, since the flow field at time level n+1
is unknown, the last known approximation to the flow field at time level n+1 is used in the
computation of the eddy viscosity. In order to assess the temporal order of the error introduced
by this approximation, the worst-case scenario of using the viscosity and eddy viscosity values at
time level n in the ADI sub-iterations is analyzed. This implies the following definition of A′:

A′ = 1

�t

(
I − �t

2
Lx1{;�n,�nr }

)(
I − �t

2
Lx2{;�n,�nr }

)(
I − �t

2
LB
x3{;�n,�nr }

)
(40)

Since the operators such as Lx1 that appear in Equation (38) are linear in the viscosity values used,
the temporal order of the error of using the viscosity values at time level n in these operators is

Lx1{;�n+1,�n+1
r }−Lx1{;�n,�nr } = Lx1{;�n+O(�t),�nr +O(�t)}−Lx1{;�n,�nr }

= Lx1{;�n,�nr }+Lx1{;O(�t),O(�t)}−Lx1{;�n,�nr }
= O(�t) (41)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:355–380
DOI: 10.1002/fld



ITERATIVE FRACTIONAL-STEP METHOD FOR INCOMPRESSIBLE LES 369

Hence, the temporal order of the error introduced in A′ is

A′′−A′ =O(�t) (42)

It should be noted that the viscosity values are also required for the computation of the residual
in Equation (26). It can be easily seen that using the last known approximation to the flow at time
level n+1 for computing the viscosity values introduces only an O(�t2) error. Since this is of the
same order as the desired temporal accuracy, the above approximation to the residual computation
is acceptable.

Thus, the temporal order of the error introduced by the above successive approximations is

A−A′ =O(1) (43)

Finally, the number of ADI sub-iterations required to achieve desired second-order temporal
accuracy is determined. If a single ADI sub-iteration is performed, then A− Â=O(1), and two
fractional-step iterations are required to reduce the iterative error to O(�t2). However, if two
ADI sub-iterations are performed, then A− Â becomes O(�t), and only a single fractional-step
iteration is required to reduce the iterative error to O(�t2). All numerical simulations presented
here are typically carried out using four processes with two fractional-step iterations and two ADI
sub-iterations.

5. PRESSURE POISSON EQUATION

Since the code is being developed for LES of incompressible flows, fourth-order spatial accuracy
is desired. But such high-order discretizations result in a very large stencil size for the PPE. In
this section, the discretization used for the pressure gradient operator that reduces the stencil size
of the PPE without loss in fourth-order spatial accuracy is described.

There are two pressure gradient operators that need to be determined. First is the pressure
gradient correcting the velocity, GW

i {p}, which appears in the discretized momentum equation,
Equation (8). Since fourth-order spatial accuracy is desired, the pressure gradient GW

i needs to be
fourth-order accurate and is chosen as

GW
i {p}≡

[
4

3

�2 p

�2�i
− 1

3

�4 p

�4�i

](
��i
�xi

)
(44)

Second is the pressure gradient correcting the volume flux, GF
i {p}, so that it becomes divergence

free, Equation (29). In this sense, the pressure correction �p[m] can be thought of as a Lagrange
multiplier which constrains the volume flux F[m] to be divergence free. GF

i is one of the O(�t)
approximations introduced in Equation (21) to invert M easier than P; hence, there is no spatial
accuracy requirement on the choice of GF

i . But the choice of GF
i affects the PPE because the

Poisson operator is given by CF{GF{•}} (see Equation (28)). Hence, GF
i is chosen to minimize

the stencil size of the Poisson operator.
Since the continuity operator, CF{}, must be spatially fourth-order accurate, a 4-point stencil is

needed in each direction. If a fourth-order accurate discretization for GF
i were used as well, this

would also have a 4-point stencil in each direction. The combination of these two operators would
result in a 7-point stencil in each direction for the PPE, which would be costly to invert. The
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size of the stencil can be made smaller, however, since there is no accuracy requirement on GF
i .

Nevertheless, the iterations in the iterative fractional-step scheme will converge to the solution of
Equations (8)–(10), which is discretized to be spatially fourth-order accurate. Thus, GF

i is chosen
to be

GF
i {p}≡

[
�1 p

�1�i

](
��i
�xi

)
Ai (45)

a spatially second-order accurate discretization of the pressure gradient multiplied by the surface
area of the cell face normal to �i . This approximation has a 2-point stencil in each direction, and
the resulting PPE has only a 5-point stencil in each direction.

Inversion of the PPE is the computationally expensive step in the fractional-step method. Hence,
reducing its stencil size plays an important role in reducing the computational cost. Experiments
were performed with several different choices for the two pressure gradient operators; the combina-
tion described above was found to work well in terms of maintaining spatial accuracy yet remaining
computationally efficient.

6. RESULTS

In this section, results to substantiate the temporal and spatial order of accuracy estimates derived
in the previous sections are presented. Results are shown for the following three flows: 2D periodic
vortex, Taylor–Green vortex, and LES of temporally evolving mixing layers.

6.1. 2D periodic vortex

The initial conditions for a periodic vortical flow in the x1x3 plane are given by

W1(0) = −cos x1 sin x3

W2(0) = 0

W3(0) = cos x3 sin x1

(46)

Since the sub-grid stress terms are of the same form as the viscous terms, the sub-grid viscosity
�r was set to 0 for code validation. The evolution of this viscous flow is such that the amplitude
of the vortex decays exponentially in time. This is one of the few flow problems for which there
is a known analytical solution:

W1(t) = e−2�t (−cos x1 sin x3)

W2(t) = 0

W3(t) = e−2�t (cos x3 sin x1)

(47)

In order to completely validate the difference coding for all three coordinate directions, solutions
for a periodic vortex in the x2x3 plane were also computed and seen to be identical to those having
the vortex in the x1x3 plane. Although this problem has certain symmetries, any serious error in
the code would have been detected using this test case.

The flow was simulated in a box with edge length 2� and the viscosity, �, was set to 0.01.
This 2D problem was simulated as a 3D problem with periodic BCs in the x2 direction. Periodic
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BCs were also applied in the x1 direction. Since the code had the capability to apply non-periodic
BCs in the x3 direction, the implementation of several different types of BCs in this direction
was also verified using this test problem. The BC applied in the x3 direction was one of the
following:

1. For the case, bc=per, periodic BCs are enforced in the x3 direction for all three velocity
components.

2. For the case bc=nper1, W3 and its third partial derivative in the x3 direction are set to zero:

�W1

�x3
= �3W1

�x33
=0 at x3= �

2
,
5�

2

�W2

�x3
= �3W2

�x33
=0 at x3= �

2
,
5�

2

W3 = �3W3

�x33
=0 at x3= �

2
,
5�

2

(48)

3. For the case bc=nper3, W3 and its second partial derivative in the x3 direction are set to
zero:

�W1

�x3
= �3W1

�x33
=0 at x3= �

2
,
5�

2

�W2

�x3
= �3W2

�x33
=0 at x3= �

2
,
5�

2

W3 = �2W3

�x23
=0 at x3= �

2
,
5�

2

(49)

First, the dependence of the temporal order of accuracy on the numerical parameters, such as
the number of fractional-step iterations nts and number of ADI sub-iterations nadi was studied.
The flow was simulated on a 643 uniform grid. Non-periodic BCs (bc=nper1) were used in the
x3 direction. A sequence of time steps, �t=0.05, 0.025, 0.0125, and 0.00625 was used to study
the temporal accuracy.

Figures 5 and 6 show the variation of volume-averaged kinetic energy at time t=10 with
�t2. The best-fit lines are also shown to determine the value at �t=0. First, it can be seen
that the value at �t=0 is the same for all combinations of numerical parameter values. When
the number of ADI sub-iterations nadi is 1, A− Â=O(1) and two fractional-step iterations are
required to achieve second-order temporal accuracy. When nadi=2, A− Â=O(�t) and only a
single fractional-step iteration is required to achieve second-order temporal accuracy. Further, for
this test problem, the errors incurred by using two fractional-step iterations and a single ADI
sub-iteration and a single fractional-step iteration and two ADI sub-iterations are comparable.
However, the latter strategy requires one fewer pressure Poisson solves, making it the preferred
method in terms of computational efficiency. Similar results were observed when periodic BCs
were enforced in the x3 direction as well. Finally, Figure 7 shows the effect of the broken-lines
approximation on the temporal convergence when the number of processes is varied between
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Figure 5. Effect of varying fractional-step iterations nts on the convergence of volume-averaged kinetic
energy (KE) with �t2 at time t=10 while ADI sub-iterations nadi is set to 1. The 2D periodic vortex at
Re=100 was computed using four processes and non-periodic boundary conditions (bc=nper1) in the
x3 direction. Best-fit curves are also included. +, nts=1; solid line, 0.1675+0.0038(�t)1; ×, nts=2;

dashed line, 0.1675+0.0024(�t)2; ∗, nts=3; dotted line, 0.1675+0.0000(�t)2.
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Figure 6. Effect of varying fractional-step iterations nts on the convergence of volume-averaged kinetic
energy (KE) with �t2 at time t=10 while ADI sub-iterations nadi is set to 2. The 2D periodic vortex at
Re=100 was computed using four processes and non-periodic boundary conditions (bc=nper1) in the
x3 direction. Best-fit curves are also included. +, nts=1; solid line, 0.1675+0.0026(�t)2; ×, nts=2;

dashed line, 0.1675+0.0000(�t)2; ∗, nts=3; dotted line, 0.1675+0.0000(�t)2.
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Figure 7. Effect of varying the number of processes np on the convergence of volume-averaged
kinetic energy (KE) with �t2 at time t=10. The 2D periodic vortex at Re=100 was computed using
non-periodic boundary conditions (bc=nper1) in the x3 direction and with ADI sub-iterations nadi
and fractional-step iterations nts set to 2. For comparison, the difference in convergence observed
when the fractional-step iterations nts is reduced to 1 is also included. Best-fit curves are also
shown. +, nts=1; solid line, 0.1675+0.0026(�t)2; ×, np=2; dashed line, 0.1675+0.0000(�t)2;
�, np=4; dash-dot line, 0.1675+0.0000(�t)2; •, np=8; double dash line, 0.1675+0.0000(�t)2;

�, np=16; triple dash line, 0.1675+0.0000(�t)2.

2 and 16. It can be seen that the error introduced by the broken-line approximation is negligible as
compared when the error introduced by reducing the number of fractional-step iterations from 2 to 1.
Also, the scheme continues to be temporally second-order accurate irrespective of the number of
processes.

Next, a mesh refinement study was carried out to verify the spatial order of accuracy. In these
simulations, the cross-derivative viscous terms are neglected and fourth-order spatial accuracy is
expected. The neglect of the cross-derivative terms is justified in this case because the physical
viscosity is constant in space; therefore, the continuity equation forces their combined contribution
to the evolution of momentum to be zero. Figure 8 shows the variation of volume-averaged kinetic
energy at time t=10 with �x2. The flow was simulated on a sequence of uniform grids having 83,
163, 323, and 643 grid cells. The time step was set to 0.0025. Figure 8 verifies that the scheme is
spatially fourth-order accurate confirming the earlier analysis that the use of spatially second-order
discretization for the pressure gradient correcting the volume flux, GF

i {p}, does not reduce the
spatial order of accuracy of the scheme.

6.2. Taylor–Green vortex

Next, the code was used to carry out a discrete numerical simulation (DNS) of the Taylor–Green
vortex flow [31], and the results are compared with those from a Fluent simulation of the same
flow. This flow is one of the simplest systems in which one can study the generation of small scales
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Figure 8. Variation of volume-averaged kinetic energy with �x2 at time t=10. The 2D periodic vortex
problem at Re=100 was computed using four processes and various BCs in the x3 direction. Best-fit
curves are also included. +, bc=nper1; solid line, 0.1676−0.5183N−4

grid; ×, bc=nper3; dashed line,

0.1676+0.4998N−4
grid; ∗, bc=per; dash-dot line, 0.1676+1.0981N−4

grid.

and the turbulence resulting from 3D vortex stretching. The initial conditions for the Taylor–Green
vortex flow are

u1 = 2√
3
sin

(
2�

3

)
sin x1 cos x2 cos x3

u2 = 2√
3
sin

(
−2�

3

)
cos x1 sin x2 cos x3

u3 = 0

(50)

Although the streamlines lie in the x1x2 plane at time t=0, the flow soon becomes 3D due to the
variation in the x3 direction introduced by the cos x3 term in the initial conditions.

The Reynolds number for this flow is defined as Re=1/�. The DNS of the Taylor–Green
flow was carried out for Re=50 and 200. The simulations were carried out in a 3D box of edge
length, 2�, and a sequence of uniform grids containing 243, 323, 483, 643, and 963 cells was used
to study the variation of the flow evolution with grid spacing. In these simulations, the cross-
derivative viscous terms are again neglected because the physical viscosity is constant in space.
All simulations were carried out with a constant time step �t=0.00625. Periodic BCs were used
in all three directions. The time histories of the volume-averaged dissipation are well predicted
by the current code. It is noted that the peak of the dissipation rate is not determined correctly
when the grid spacing is not small enough to resolve the small-scale flow structures. The Fluent
simulations were carried out with the same parameter values and on Cartesian cubic grids with
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Figure 9. Variation of volume-averaged dissipation rate at time t=2 with N−2
grid for Re=50. Ngrid is

the number of grid points in each coordinate direction. Best-fit curves are also included. ∗, iterative
fractional-step scheme; dashed line, best fit for iterative fractional-step with y-intercept=0.01532461; ◦,

fluent simulations; solid line, best fit for Fluent simulations with y-intercept=0.01532663.

the same number of grid points even though Fluent has the capability to use unstructured grids.
Fluent uses a spatially second-order accurate scheme.

Figure 9 shows the variation of volume-averaged dissipation rate at time t=2 with N−2
grid for

Re=50. The time chosen for comparison is close to that of the peak dissipation rate so that
the flow has sufficient small-scale structures. Since a uniform grid was used, the number of grid
points in each direction Ngrid is inversely proportional to the grid spacing. The power of 2 was
chosen because a spatially second-order scheme (such as the Fluent code) should produce a linear
variation of the dissipation, while the current spatially fourth-order scheme should produce a
quadratic variation at sufficiently small grid spacings. The curve fits in Figure 9 are drawn using
the data points at the smallest two grid spacings. Since the other data points, at least those at
smaller grid spacings, lie very close to these curves, this is another verification that the spatial
order of accuracy of the current code is 4 and that of Fluent is 2. This figure further allows us to
compare the asymptotic value of the volume-averaged dissipation obtained at zero grid spacing by
determining the y-intercept. It is noted that the asymptotic values for the two codes are virtually
identical, further increasing confidence in the current code. Similar results were observed at
Re=200.

6.3. LES of temporal mixing layer

In this sub-section, the performance of the current code is studied for the LES of the temporally
evolving mixing layer occurring between two fluid streams moving with equal and opposite free-
stream speeds U0. The flow was simulated in a 3D cubic domain [0, L1]×[0, L2]×[−L3/2, L3/2].
Periodic BCs are enforced in the x1 and x2 directions, while free-slip BCs are enforced in the x3
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direction:

�W1

�x3
= �3W1

�x33
=0 at x3=− L3

2
,
L3

2

�W2

�x3
= �3W2

�x33
=0 at x3=− L3

2
,
L3

2

W3 = �3W3

�x33
=0 at x3=− L3

2
,
L3

2

(51)

Uniform grid spacing was used in the periodic x1 and x2 directions, while a stretched Cartesian
grid was used in the x3 direction (since the largest flow gradients occur in the region between the
two fluid streams). An algebraic transformation [32, 33] was used to map the non-uniform grid in
physical space xi to the uniform grid in computational space �i :

�3= x3

|x3|+ L3

2

(52)

The above maps x3 : [−L3/2, L3/2]→�3 : [− 1
2 ,

1
2 ].

The flow is started from the hyperbolic tangent mean velocity profile given by W1=
U 0 tanh(x3/�

0
w), where U 0 is the free-stream speed and �0w is half the initial vorticity thickness

defined as

�w ≡ U 0

(�W3/�x3)max
(53)

The hyperbolic tangent velocity profile has an inflection point, making it susceptible to inviscid
instabilities. To initiate turbulence, 2D and 3D eigenfunction perturbations were superimposed on
the mean velocity profile [34–36]. To allow two vortex pairings, the length of the computational
domain was chosen to be four times the stream-wise wavelength �x1 of the most unstable eigen-
function from linear stability analysis. The values selected for the various numerical parameters
defining the initial conditions are summarized as follows:

U 0 = 1.0

�0w = 1.0

� = 0.02

Re0= U 0�0w
�

= 50

�x1 = 2.35(2�)

L1= L2= L3 = 59≈4�x1

(54)
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Figure 10. Effect of varying the ADI sub-iterations nadi and fractional-step iterations nts on the temporal
accuracy of the LES of mixing layer. Simulations were carried out using a 643 non-uniform grid with
�=1.84375 and a sequence of time steps: �t=0.02, 0.01, 0.005, and 0.0025. Best-fit curves are also
shown. +, nts=1, nadi=2; solid line, 0.4513+0.0007(�t)2; ◦, nts=1, nadi=2 without updating the
eddy viscosity at each ADI sub-iteration; dash-dot line, 0.4513−4.7e−5(�t)1; ∗, nts=2, nadi=1; dashed

line, 0.4513+0.0007(�t)2; ∗, nts=2, nadi=2; dotted line, 0.4513+0.0007(�t)2.

The LES was carried out using the Smagorinsky sub-grid model [37], in which

�r =(CS�)2(2SWi j S
W
i j )1/2 (55)

where CS is the Smagorinsky constant (here taken as CS=0.17), and � is the filter width.
In Figure 10, the temporal order of accuracy was verified by performing the LES on a sequence of

time steps. The eddy viscosity �r is a function of both space and time and needs to be updated at each
ADI sub-iteration to achieve desired second-order temporal accuracy. Again, the errors incurred
by using two fractional-step iterations and a single ADI sub-iteration and a single fractional-step
iteration and two ADI sub-iterations are comparable, but the latter strategy is preferred in terms
of computational efficiency.

7. CONCLUSION

The block-matrix analysis originally developed by Perot [13] is extended to study the order of
accuracy of the fractional-step method developed by Bell et al. [19] and its iterative variants [20] on
a collocated grid layout. The starting point of the analysis is a temporally second-order discretization
with explicit treatment of the convective terms using Adams–Bashforth and implicit treatment of
the viscous and sub-grid scale stresses using Crank–Nicolson. A collocated grid layout is preferred
for ease of extension to curvilinear grids. The capability to solve on stretched Cartesian grids is
implemented by mapping the physical grid onto a uniform computational grid.
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The discretization results in a nearly linear system of equations that is hard to solve due to
the constraints imposed by the discrete continuity equation. Hence, an iterative procedure is used,
in which a linear system with an easier block-LU decomposition as compared with the original
system is inverted at each iteration. The analogy between the block-LU decomposition carried out
at each iteration and the conventional fractional step is also detailed.

The number of iterations required to reduce the iterative error to the discretion error of O(�t2) is
discussed. In order to improve the numerical efficiency, ADI sub-iterations are used in the velocity
step of each iteration. The ADI sub-iteration is further modified to improve parallel performance.
The modification approximates the linear system arising in the x3 direction by neglecting elements
that necessitate communication between processes. The iteration error introduced by performing
a finite number of fractional-step iterations and ADI sub-iterations is investigated using the block-
matrix analysis. The most efficient fractional-step method that achieves second-order temporal
accuracy is identified to require two ADI sub-iterations and a single fractional-step iteration.

Energy-conserving discretization is used for the convective terms to improve the stability and
accuracy of the numerical scheme. The requirement of energy conservation constrains the continuity
equation to a specific spatially fourth-order accurate discretization. This discrete continuity equation
combined with a fourth-order discretization for the pressure gradient to correct the volume flux
results in a large 7-point stencil in each direction for the PPE. The stencil is reduced to a 5-
point stencil in each direction by discretizing the pressure gradient operator using a second-order
discretization. It is shown that this change does not affect the spatial order of accuracy of the
scheme because the pressure gradient operator used to advance the momentum equations and
the discrete continuity equation are still spatially fourth-order accurate. Lastly, for simplicity, the
cross-derivative terms in the sub-grid scale stresses are discretized to second-order spatial accuracy.

The order of accuracy estimates presented in this paper are verified in the three flow prob-
lems: DNS of 2D periodic vortex, DNS of Taylor–Green vortex, and LES of temporally evolving
mixing layer. The 2D periodic vortex calculations confirmed that second-order time accuracy can
be achieved by using two fractional-step iterations with a single ADI sub-iteration or a single
fractional-step iteration with two ADI sub-iterations. Since the errors in the two cases are compa-
rable, the latter strategy is preferred since it requires one fewer pressure Poisson solves. Fourth-
order spatial accuracy is expected in these simulations, as the cross-derivative viscous terms are
neglected. A mesh refinement study verified that the scheme is spatially fourth-order accurate and
confirmed the earlier analysis that the use of spatially second-order discretization for the pressure
gradient correcting the volume flux, GF

i {p}, does not reduce the spatial order of accuracy of the
scheme. The DNS of the Taylor–Green vortex was also carried out neglecting the cross-derivative
terms. Fourth-order spatial accuracy is again confirmed. Both these solutions demonstrated that
the approximations introduced in the PPE did not reduce the spatial order of accuracy. Finally,
the LES of a temporally evolving mixing layer was simulated using the Smagorinsky model. The
desired second-order time accuracy is maintained even though the eddy viscosity is a function of
both space and time for this case.
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